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Abstract To further our understanding of the genetic
control of blast resistance in rice cultivar Gumei 2 and,
consequently, to facilitate the utilization of this durably
blast-resistant cultivar, we studied 304 recombinant
inbred lines of indica rice cross Zhong 156/Gumei 2
and a linkage map comprising 181 markers. An analysis
of segregation for resistance against five isolates of rice
blast suggested that one gene cluster and three addi-
tional major genes that are independently inherited are
responsible for the complete resistance of Gumei 2. The
gene cluster was located to chromosome 6 and includes
two genes mapped previously, Pi25(t), against Chinese
rice blast isolate 92-183 (race ZC15) and Pi26(t) against
Philippine rice blast isolate Ca89 (lineage 4), and a gene
for resistance against Philippine rice blast isolate 92330-
5 (lineage 17). Of the two genes conferring resistance
against the Philippine isolates V86013 (lineage 15) and
C923-39 (lineage 46), we identified one as Pi26(t) and
mapped the other onto the distal end of chromosome 2
where Pib is located. We used three components of
partial blast resistance, percentage diseased leaf area
(DLA), lesion number and lesion size, all measured in
the greenhouse, to measure the degree of susceptibility
to isolates Ca89 and C923-39 and subsequently
identified nine and eight quantitative trait loci

(QTLs), respectively. Epistasis was determined to play
an important role in partial resistance against Ca89.
Using DLA measured on lines susceptible in a blast
nursery, we detected six QTLs. While different QTLs
were detected for partial resistance to Ca89 and C923-
39, respectively, most were involved in the partial resis-
tance in the field. Our results suggest that the blast
resistance in Gumei 2 is controlled by multiple major
genes and minor genes with epistatic effects.

Introduction

Rice blast resistance, caused by Magnaporthe grisea, has
been studied extensively, but this diverse and rapidly
changing pathogen has never been permanently brought
under control. New varieties frequently lose their resis-
tance within a few years—sometimes within 1 year—of
their release to farmers (Kiyosawa 1982; Reddy and
Bonman 1987). Nevertheless, breeding for resistant
varieties remains the most promising choice for man-
aging the blast problem, and gene pyramiding seems
promising to provide broad spectrum and durable
resistance (McClung et al. 1997; Tabien et al. 2002).

Mapping studies on blast resistance genes (R genes)
have been carried out extensively since the 1990s as a
result of the increasing availability of DNA molecular
markers. To date, at least 25 R genes have been identi-
fied and mapped using molecular markers. These genes
are distributed on 10 of the 12 rice linkage groups, with
the exception of chromosomes 3 and 10, and many of
them are clustered on chromosomes 6, 11 and 12
(Kinoshita 1995; Pan et al. 1996, 1998; Chen et al. 1999;
Zhuang et al. 2002). Wang et al. (1994) located Pi7(t) on
chromosome 11 using recombinant inbred lines (RILs)
derived from a cross between Moroberekan, a durable
resistant cultivar from Ivory Coast, and susceptible
control CO39. This group was also the first to identify a
number of quantitative trait loci (QTLs) for partial blast
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resistance, which they measured using three components
of partial blast resistance, percentage diseased leaf area
(DLA), lesion number (LN) and lesion size (LS). At the
present time, at least seven R genes have been identified
in Moroberekan (Wang et al. 1994; Naqvi et al. 1995;
Inukai et al. 1996; Naqvi and Chattoo 1996; Chen et al.
1997a, 1999), indicating that the genetic control of blast
resistance is complicated and involves both major and
minor genes. Blast resistance in some of the traditional
Chinese resistant cultivars has been shown to be mainly
controlled by multiple minor genes with complementary
or additive effects (He et al. 1989a), although major
genes do contribute under certain circumstances (He
et al. 1989b). In general, durable resistance to blast has
been considered to be complicated and influenced by
environment (Bonman 1992).

A long-term nationwide evaluation of blast resistance
of 38,000 rice accessions by 33 Chinese rice research
organizations resulted in the selection of 140 resistant
accessions. These were tested further for durable resis-
tance from 1990 to 1994 in six blast nurseries covering
five rice-growing regions from southern to northern
China. Rice cultivar Gumei 2 was tested in 34 blast
nurseries for 12 years and found to be the only semi-
dwarf cultivar possessing durable blast resistance (Peng
et al. 1996). The objective of the investigation reported
here was to determine the genetic control of resistance to
blast in Gumei 2.

Materials and methods

Plant materials and inoculation

In the early growing season of 1990, Zhong 156, as
female parent, was crossed to Gumei 2 at the China
National Rice Research Institute (CNRRI), Hangzhou,
China. From a single F1 plant, seeds were collected and
advanced by single seed descent. In 1995, 304 RILs at
the F8 generation were obtained.

The two parents (10 plants each for two replications
in two independent experiments) were inoculated with
40 Philippine isolates at IRRI (International Rice Re-
search Institute, Manila, Philippines) by means of a
standard inoculum (1·105 conidia/ml). No isolates were
able to successfully infect Gumei 2, but eight isolates
were compatible to Zhong 156, and four of these, rep-
resenting four different lineage groups, were chosen to
test the RILs for blast resistance in the greenhouse.
These isolates were Ca89 (lineage 4), V86013 (line-
age 15), 92330-5 (lineage 17) and C923-39 (lineage 46)
(Chen 1993). The RILs were inoculated in a complete
randomized block design with three replications of ten
plants per line. For each of the four isolates, lesion
types 0–3 were scored as resistant and lesion types 4 and
5 as susceptible (Bonman et al. 1986). Partial resistance
was only measured for lines susceptible to Ca89 and
C923-39, respectively. DLA was estimated visually fol-
lowing the Standard Evaluation System (SES) for rice

[International Rice Research Institute (IRRI) 1996],
while LN and LS were measured using 30 plants in the
three replications.

In the blast nursery, RILs, parents and susceptible
control CO39 were planted as described by Wu et al.
(2004b). Between 30 and 40 seeds were sown in a row of
10·3·1 cm. The experiment was a complete randomized
block design with three replications. DLA was estimated
once a week beginning 14 days after sowing; data col-
lected at the fourth week were used for analysis.

Molecular marker analysis

Roughly 10 g of fresh leaf tissue from 20 plants per line
were bulked for DNA extraction following the sodium
dodecyl sulfate (SDS) method of Lu and Zheng (1993).
Southern blotting was performed according to standard
methodology (Sambrook et al. 1989). Six restriction
enzymes (BamHI, DraI, EcoRI, EcoRV, HindIII, XbaI)
were used for the parental survey of polymorphism.
Probe hybridization and signal detection were carried
out using ECL Direct Nucleic Acid Labelling and
Detection Systems (Amersham Pharmacia Biotech,
Chalfont, UK). Restriction fragment length polymor-
phism (RFLP) probes were from Cornell University
(USA) and the Rice Genome Research Program (RGP)
of Japan, except that candidate genes were provided by
Kansas State University (see http://www.ksu.edu/
ksudgc/).

The simple sequence repeat (SSR) primers were
amplified according to Chen et al. (1997b). The PCR
products were detected on 1.5% agarose gels or on 4%
denaturing polyacrylamide gels using silver staining
following the manufacturer’s recommendation (Pro-
mega, Madison, Wis.). Resistance gene analogue (RGA)
primers were amplified based on the method described
by Chen et al. (1998) with a minor modification: an
initial denaturation at 94�C for 4 min, followed by 40
cycles of 1 min at 94�C, 1 min at 42�C and 1.5 min at
72�C and terminated by a final extension of 8 min at
72�C.

Data analysis

MAPMAKER ver. 3.0b (Lander et al. 1987) was employed
for the construction of a framework map. A LOD of
3.0 was used to determine linkage groups, and the or-
der of linked markers was determined at LOD of 2.0
within a linkage group. Map distances presented in
centiMorgans (cM) between markers were derived from
the Kosambi function (Kosambi 1944). The chromo-
somal locations of major genes were inferred using
MAPMAKER 3.0b.

The QTLs conditioning partial resistance against
Ca89 and C923-39 were identified by employing the
Multiple Interval Mapping (MIM) approach of Win-
dows QTL CARTOGRAPHER ver. 2.0 (Wang et al. 2004).
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MIM simultaneously fits multiple putative QTLs in the
model for mapping QTLs, and the QTL effects and
variance partition are additive. The QTLs are deter-
mined using model selection criteria that could super-
sede the requirement of a true threshold. In this study,
the Bayesian Information Criterion (BIC) default value
c(n)=ln(n) was used to search QTLs and QTL epistasis
at a walk speed of 1 cM. Given the detection of QTLs
with significant additive effects, QTL positions were
optimized and fitted into the model. The QTL epistasis
was then searched using the same criteria. Given sig-
nificant epistasis detected, the QTL positions were
optimized again and fitted into the model. The QTL
effects and variance partition were calculated based on
the final model. The additive-by-additive epistatic effect
was defined as the difference between the effects of
parental genotype combinations and recombinant
genotype combinations.

Results and discussion

Genetic control of blast resistance

Gumei 2 was completely resistance to all four isolates.
Zhong 156 was susceptible to all four isolates with
typical lesion type 4, but LN and DLA were relatively
low in contrast to the susceptible control CO39. Resis-
tance to isolate Ca89 was mediated by a single gene,
while resistance to each of the other three isolates was
governed by two R genes (Table 1). Since only Gumei 2
was resistant, the resistance alleles had to have origi-
nated from Gumei 2.

Of the 304 RILs, 301 showed a consistent, identical
response pattern to isolates V86013 and C923-39, while
the remaining three lines (G116, G128 and G282)
showed inconsistent reactions to either V86013 or C923-
39 (Table 1). This result indicated that the same set of
two R genes probably controlled blast resistance to
these two isolates. The 73 lines susceptible to both
V86013 and C923-39 were all susceptible to Ca89,
implying that the gene conditioning resistance to Ca89
was likely one of the two R genes against V86013 and

C923-39. Of the 78 lines susceptible to 92330-5, 76 lines
were also susceptible to Ca89, while the remaining two
lines were resistant to Ca89, indicating that one of the
two R genes against 92330-5 was tightly linked to the
gene against Ca89. On the other hand, 38 of the 73 lines
susceptible to both V86013 and 923-39 were resistant to
92330-5, and 43 of the 78 lines susceptible to 92330-5
were resistant to V86013 and 923-39. Thus, the second
gene for resistance to V86013 and 923-39 was indepen-
dently inherited from the second gene for resistance to
92330-5.

The gene conferring resistance against Ca89 has al-
ready been mapped and tentatively designated as
Pi26(t). A different gene conferring neck blast resistance
to a Chinese blast isolate 92-183 (race ZC15) has also
been mapped using the same population and tentatively
designated as Pi25(t) (Wu et al. 2004a). Mapping located
Pi25(t) and Pi26(t) to closely linked intervals on chro-
mosome 6. A total of 287 rice lines showed consistent
resistance or susceptibility to neck blast isolate 92-183
over a 3-year period. Of these,183 and 93 lines had a
consistent resistance or susceptible reaction, respec-
tively. Of the 93 lines susceptible to Chinese blast isolate
92-183, 87 and 6 were respectively susceptible and
resistance to Philippine blast isolate Ca89, 39 and 54,
respectively, for Philippine blast isolate V86013, 39 and
53, respectively, for Philippine blast isolate C923-39 and
62 and 30, respectively, for Philippine blast isolate
92330-5. This results indicated that the second resistance
gene against Chinese isolate 92-183 was independently
inherited from genes controlling resistance to the
Philippine isolates. In addition to the resistance gene
cluster in the Pi25(t)/Pi26(t) region, at least three more
major genes were responsible for the blast resistance of
Gumei 2.

Mapping of major genes

Wu et al. (2004a) used a linkage map consisting of 177
marker loci for mapping Pi25(t) and Pi26(t). We added
14 additional SSR markers in the region harbouring
Pi25(t)/Pi26(t) for the present survey of the parents.

Table 1 Genetic analysis of
blast resistance of 304 RILs
from the indica rice cross
Zhong 156/Gumei 2 to
different Philippine isolates

aR, Resistance (lesion types 0–
3); S, susceptible (lesion types 4
and 5); –, inconsistent reaction

Group Phenotypea Number of lines

Ca89 V86013 C923-39 9233-5

I S S S S 35
II S S S R 38
III S R R S 41
IV S S – R 1
V S – R – 1
VI S R – R 1
VII S R R R 31
VIII R R R R 153
IX – R R R 1
X R R R S 2
R:S 155:148 229:74 229:73 225:78
Chi-test P(1:1)=0.69 P(3:1)=0.82 P(3:1)=0.74 P(3:1)=0.77
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Four polymorphic markers were assayed in the popu-
lation, and the map was updated to include 181 marker
loci. The locations of Pi25(t) and Pi26(t) were revised
(Fig. 1). Pi25(t) stayed in the same location in interval
A7-RG456, while Pi26(t) was modified to a location in
the region flanked by markers K17 and R2123 at a
distance 9.1 cM from K17 and 2.0 cM from R2123.

To avoid the masking effects of one gene on the other
in the presence of two R genes against isolates 92330-5,
V86013 and C923-39, we used susceptible lines to locate
the R genes. The 78 lines susceptible to 92330-5 were
used for mapping genes controlling resistance to this
isolate. One of the two R genes against 92330-5 was
located on chromosome 6 at a distance 8.5 cM from
marker K17 and 2.7 cM from marker R2123. As sug-
gested by the segregation analysis and supported by
the linkage analysis, the resistance gene against Ca89
was tightly linked to one of the genes for resistance to
92330-5. Because we were unable to determine if these
were two independent loci, no new gene designations
were given. Markers in other regions, including those
unlinked, showed no associations to blast resistance

against 92330-5 and 92-183. Therefore, the second
resistant gene to 92330-5 and the second one to 92-183
could not be mapped.

As all the 73 lines susceptible to both V86013 and
C923-39 were also susceptible to Ca89, the 73 lines were
not used for mapping the gene on chromosome 6 but
were used to tag the second resistance gene. This second
gene was mapped on chromosome 2, with all susceptible
lines having the allele from the susceptible parent
Zhong 156 at marker locus RM208. Since the R gene
Pib and marker RM208 were located at the same posi-
tion (186.4 cM) on chromosome 2 in the Cornell
2001 SSR map, the gene symbol Pib was used for the
second resistance gene against V86013 and C923-39.

Mapping of partial resistance genes

DLA, LN and LS are the three major components of
partial resistance. In the present study, partial blast
resistance was tested for DLA in the blast nursery at
IRRI and all three components were tested for isolates

Fig. 1 Genetic map constructed using 304 RILs derived from Gumei 2/Zhong 156. The map contains 181 markers from all 12 linkage
groups based on the assignment of Causse et al. (1994), but only linkage groups in which major genes or QTLs were detected are shown
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Ca89 and C923-39 in the greenhouse, using the mono-
cyclic test. The analysis of variance indicated highly
significant differences among the lines tested and for
each parameter measured (P=4.21·10�4–1.37·10�23).

Based on the data collected from the 148 RILs sus-
ceptible to Ca89, nine QTLs and two digenic interac-
tions were detected for partial resistance against Ca89
(Table 2). Two QTLs were detected for DLA, and these
interacted with each other, with the epistatic effect be-
tween the two DLA QTLs being larger than the effect of
each individual QTL alone. Three QTLs and one digenic
interaction were detected for LN. Similar to the epistasis
detected for DLA, the epistatic effect for LN was
larger than the individual effect of any of the three
LN QTLs. Four QTLs were detected for LS, while no
significant epistasis was found for this trait. The
contribution of the LS QTLs to the phenotypic variance
ranged from 2.8% to 11.5%. As expected, LN was
the trait for which the detected QTLs and epistasis
had the largest general contribution to the phenotypic
variance.

Using the 74 RILs susceptible to C923-39, we de-
tected eight QTLs for partial resistance against C923-39,
including two for DLA, three for LN and three for LS
(Table 2). No epistasis was detected for DLA and LS,
while one epistatic effect was found for LN. The two
DLA QTLs explained 10.7% and 9.3% of the pheno-
typic variance, respectively, and the three LS QTLs ex-
plained a range of LS variance from 6.4% to 8.0%. Two
of the three QTLs detected for LN were located on

chromosome 1, and these showed major effects,
accounting for 25.9% and 17.1% of the phenotypic
variance, respectively. In addition, the two QTLs inter-
acted with each other and had an additional contribu-
tion of 12.5% to the LN variance. The third QTL was
located on chromosome 11 and had a smaller contri-
bution of 6.6%.

The use of all the three traits inferring partial resis-
tance against Ca89 and C923-39 provided an opportu-
nity to compare the locations of the QTLs detected for
different traits for the same isolate and for different
isolates. We found that QTLs detected for different traits
for the same isolate were frequently located in similar
genomic regions: in the vicinity of RM25 on chromo-
some 8 and the intervals flanked by RM254 and S2A1-
12 on chromosome 11, QTLs were detected for each of
the three traits for Ca89 and C923-39, respectively; in
the region marked by S2A1-3 and RM251 on chromo-
some 3, QTLs were detected for LN and LS for Ca89. In
contrast, no QTLs were detected for the same or dif-
ferent traits for different isolates.

For DLA in the blast nursery, 301 lines showed
consistent phenotypes, of which 234 lines were resistant
and 67 were susceptible. DLA phenotypes of the 67
susceptible RILs were used to detect QTLs conditioning
partial resistance in the blast nursery. Six QTLs were
detected on five chromosomes (Table 2), but no signifi-
cant digenic interactions were found. The contribution
of these QTLs to the phenotypic variance ranged from
3.3% to 28.6%.

Table 2 Partial blast resistance
QTLs and epistasis detected in
the Zhong 156/Gumei 2 RIL
population

aDLA, Percentage diseased leaf
area; LN, lesion number; LS,
lesion size
bThe epistatic effect was mea-
sured as the difference between
the effects of parental genotype
combinations and the recombi-
nant genotype combinations. A
positive value indicates that the
effect of the parental type is
greater than that of the recom-
binant type. A negative value
indicates that the effect of the
parental type is lower than that
of the recombinant type. The
additive effect was measured as
the genetic effect when a Zhong
156 allele was replaced by a
Gumei 2 allele

Isolate Traita QTL Left marker Distance from
left marker
(cM)

R2 (%) Effectb

Ca89 DLA qDLA7 RZ471 2.2 3.8 �0.33
qDLA8 RM25 2.9 7.7 0.43
qDLA7·qDLA8 10.8 �0.54

LN qLN2 RM263 6.0 8.4 0.58
qLN3 S2A1-3 2.6 5.0 0.44
qLN8 RM25 0.1 7.4 0.52
qLN2·qLN8 13.1 0.74

LS qLS1 RM5 11.6 11.5 �0.40
qLS3 RM251 5.3 6.8 0.34
qLS4 RM119 0.1 2.8 0.20
qLS8 RM25 6.7 6.1 0.28

C923-39 DLA qDLA2 RZ599 0.0 10.7 0.85
qDLA11 S2A1-12 0.0 9.3 0.78

LN qLN1-1 RG313 2.9 25.9 �13.97
qLN1-2 RM23 6.9 17.1 �12.64
qLN11 S2A1-12 0.1 6.6 3.60
qLN1-1·qLN1-2 12.5 11.01

LS qLS10 RG241B 2.8 6.4 �0.06
qLS11-1 R6b 4.8 6.5 0.06
qLS11-2 RM254 10.6 8.0 0.07

Blast nursery DLA qDLA1 RM283 0.1 12.5 �2.36
qDLA2 RG144 5.8 3.3 1.41
qDLA3-1 RM22 2.4 28.6 3.16
qDLA3-2 Pk34-10 1.7 8.1 �1.96
qDLA7 RG678 0.1 5.7 �1.68
qDLA11 Nlrr-2 0.0 7.8 �1.98
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A point worth noting is that QTLs responsible for
DLA variation in the blast nursery were generally de-
tected in genomic regions where QTLs conditioning
partial resistance against either Ca89 or C923-39 were
detected. Two QTLs, qDLA2 and qDLA7, had similar
locations to DLA QTLs for C923-39 and Ca89,
respectively. In regions harbouring qDLA3-2 and
qDLA11, QTLs for related traits were found for Ca89
and C923-39, respectively. Of the remaining two QTLs,
qDLA3-1 is linked to qDLA3-2, and qDLA1 was located
adjacent to qLN1-1 for C923-39. These results clearly
show that the QTLs detected in the inoculation experi-
ment played a major role in the genetic control of partial
blast resistance in the blast nursery.

Effect of R genes in the blast nursery

Based on DNA markers most tightly linked to the three
major blast R genes, Pi26(t), Pi25(t) and Pib, we were
able to determine the resistance alleles present in the 301
RILs showing consistent DLA performance in the blast
nursery. Of the 78 lines that possessed resistant alleles at
all three loci, 77 lines were resistant and only one line
was susceptible. Similarly, the 68 lines carrying resistant
alleles at both the Pi26(t) and Pi25(t) loci and the sus-
ceptible allele at the Pib locus were all resistant. Of the
20 lines containing a resistance allele at either the Pi26(t)
or Pi25(t) locus, four lines were susceptible and 16 lines
were resistant. These results suggest that the existence of
resistance alleles at both the Pi26(t) and Pi25(t) loci were
sufficient to control the blast disease in the blast nursery,
while the presence of a resistance allele at only one of the
Pi26(t) and Pi25(t) loci may not be sufficient to confer
resistance.

In the remaining groups—60 lines carrying a resistant
allele at the Pib locus only and 75 lines carrying no
resistant alleles at the three Pi loci—the susceptible and
resistance lines segregated in a 1:1 ratio. These results
suggest that Pib was relatively ineffective in the IRRI
blast nursery, while one other gene that was not mapped
in this study is involved in conferring resistance.

Conclusions

Our results show that multiple major genes are
responsible for conferring blast resistance in Gumei 2.
In addition to a gene cluster containing Pi26(t) and
Pi25(t) on chromosome 6, major genes at three other
regions were found to be present in Gumei 2. Based on
the results from resistance segregation analysis, we
determined that Pi26(t) and Pi25(t) are non-allelic but
closely linked. The resistance performance of the RILs
in the blast nursery also implied that Pi25(t) may act
differently from Pi26(t). Nevertheless, these loci have
been located to chromosome 6 in the region with
a cluster of R genes, including Piz5, Pi2(t), Pi3,
Pi8, Pi9(t) and Pi13(t) (Yu et al. 1991; Mackill and

Bonnman 1992; Causse et al. 1994; Pan et al. 1996,
1998; Liu et al. 2002). Another gene mapped in this
study was located on the distal end of chromosome 2
where the cloned R gene, Pib (Wang et al. 1999), was
located. The relationship between the genes carried by
Gumei 2 and those found in other cultivars needs to be
further studied.

Partial blast resistance to Ca89, C923-39 and the
pathogen population was studied using susceptible
lines. On the basis of the results, we conclude that
partial resistance to Ca89 and C923-39 observed in the
present study was likely controlled by different QTLs,
while most of the QTLs detected using single isolates in
the greenhouse were involved in the partial resistance in
the field. Unlike the four major genes for which the
resistant alleles are from Gumei 2, the sources of
partial resistance were either from Zhong 156 or
Gumei 2 both in the greenhouse and under field con-
ditions. This phenomenon is similar to those observed
in other studies on various disease and plant species
(Wang et al. 1994; Ramalingam et al. 2003; Wu et al.
2004b).

Gumei 2 is considered to have unusual character-
istics that are quite valuable in rice breeding. Unlike
many other blast resistance donors, it is a semi-dwarf
plant type and has a relatively short growth period.
Studies on the inheritance of blast resistance in Gumei
2 should enhance the utilization of this germplasm. The
yield traits of the Zhong 156/Gumei 2 RILs were
evaluated in 1996 and 1998 and in two seasons in 2001
(Cao et al. 2003a; Zheng et al. 2003), and three lines
carrying Gumei 2 alleles at marker loci K17 through
R674 [i.e. carrying resistance alleles at Pi25(t) and
Pi26(t)] that showed promising yield potential were
identified. Although these lines are not desirable for
commercial usage due to poor grain quality, they have
shown a wide-spectrum of blast resistance. In other
marker assisted selection practice utilizing bacterial
blight (BB) resistance gene pyramids introduced from
IRRI (Huang et al. 1997), a number of new restorer
lines for three-line hybrid rice have been developed by
the CNRRI (Cao et al. 2003b), and seven new hybrids
have been released commercially. By crossing BB-
resistant lines to blast resistance gene pyramids selected
from a Zhong 156/Gumei 2 RIL population, popu-
lations are currently being used to select superior lines
carrying multiple blast R genes and other desirable
traits.
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